\(\int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx\) [461]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-1)]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 216 \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\frac {(A+i B) \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a-b)^{3/2} d}-\frac {(A-i B) \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a+b)^{3/2} d}-\frac {2 A}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 b \left (a^2 A+2 A b^2-a b B\right ) \sqrt {\tan (c+d x)}}{a^2 \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}} \]

[Out]

(A+I*B)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))/(I*a-b)^(3/2)/d-(A-I*B)*arctanh((I*a+b)^
(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))/(I*a+b)^(3/2)/d-2*A/a/d/tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2)
-2*b*(A*a^2+2*A*b^2-B*a*b)*tan(d*x+c)^(1/2)/a^2/(a^2+b^2)/d/(a+b*tan(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 1.21 (sec) , antiderivative size = 216, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3690, 3730, 3697, 3696, 95, 209, 212} \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=-\frac {2 b \left (a^2 A-a b B+2 A b^2\right ) \sqrt {\tan (c+d x)}}{a^2 d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {(A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d (-b+i a)^{3/2}}-\frac {(A-i B) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d (b+i a)^{3/2}}-\frac {2 A}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \]

[In]

Int[(A + B*Tan[c + d*x])/(Tan[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^(3/2)),x]

[Out]

((A + I*B)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/((I*a - b)^(3/2)*d) - ((A - I*
B)*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/((I*a + b)^(3/2)*d) - (2*A)/(a*d*Sqrt
[Tan[c + d*x]]*Sqrt[a + b*Tan[c + d*x]]) - (2*b*(a^2*A + 2*A*b^2 - a*b*B)*Sqrt[Tan[c + d*x]])/(a^2*(a^2 + b^2)
*d*Sqrt[a + b*Tan[c + d*x]])

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3690

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n
 + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e +
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*B*(b*c*(m + 1) + a*d*(n + 1)) + A*(a*(b*c - a*d)*(m + 1) - b^2*d*(
m + n + 2)) - (A*b - a*B)*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n + 2)*Tan[e + f*x]^2, x], x
], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
&& LtQ[m, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ
[a, 0])))

Rule 3696

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2 +
 B^2, 0]

Rule 3697

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2
 + B^2, 0]

Rule 3730

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Ta
n[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rubi steps \begin{align*} \text {integral}& = -\frac {2 A}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 \int \frac {\frac {1}{2} (2 A b-a B)+\frac {1}{2} a A \tan (c+d x)+A b \tan ^2(c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}} \, dx}{a} \\ & = -\frac {2 A}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 b \left (a^2 A+2 A b^2-a b B\right ) \sqrt {\tan (c+d x)}}{a^2 \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {4 \int \frac {\frac {1}{4} a^2 (A b-a B)+\frac {1}{4} a^2 (a A+b B) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{a^2 \left (a^2+b^2\right )} \\ & = -\frac {2 A}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 b \left (a^2 A+2 A b^2-a b B\right ) \sqrt {\tan (c+d x)}}{a^2 \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {(A-i B) \int \frac {1+i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{2 (i a+b)}-\frac {((i a+b) (A+i B)) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{2 \left (a^2+b^2\right )} \\ & = -\frac {2 A}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 b \left (a^2 A+2 A b^2-a b B\right ) \sqrt {\tan (c+d x)}}{a^2 \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {(A-i B) \text {Subst}\left (\int \frac {1}{(1-i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 (i a+b) d}-\frac {((i a+b) (A+i B)) \text {Subst}\left (\int \frac {1}{(1+i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 \left (a^2+b^2\right ) d} \\ & = -\frac {2 A}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 b \left (a^2 A+2 A b^2-a b B\right ) \sqrt {\tan (c+d x)}}{a^2 \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {(A-i B) \text {Subst}\left (\int \frac {1}{1-(i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a+b) d}-\frac {((i a+b) (A+i B)) \text {Subst}\left (\int \frac {1}{1-(-i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\left (a^2+b^2\right ) d} \\ & = \frac {(A+i B) \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a-b)^{3/2} d}-\frac {(A-i B) \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a+b)^{3/2} d}-\frac {2 A}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 b \left (a^2 A+2 A b^2-a b B\right ) \sqrt {\tan (c+d x)}}{a^2 \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.33 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.15 \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\frac {\frac {\sqrt [4]{-1} \left (\frac {(a+i b) (A-i B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {-a+i b}}-\frac {(a-i b) (A+i B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {a+i b}}\right )}{a^2+b^2}-\frac {2 A}{a \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 b \left (a^2 A+2 A b^2-a b B\right ) \sqrt {\tan (c+d x)}}{a^2 \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{d} \]

[In]

Integrate[(A + B*Tan[c + d*x])/(Tan[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^(3/2)),x]

[Out]

(((-1)^(1/4)*(((a + I*b)*(A - I*B)*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*
x]]])/Sqrt[-a + I*b] - ((a - I*b)*(A + I*B)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Ta
n[c + d*x]]])/Sqrt[a + I*b]))/(a^2 + b^2) - (2*A)/(a*Sqrt[Tan[c + d*x]]*Sqrt[a + b*Tan[c + d*x]]) - (2*b*(a^2*
A + 2*A*b^2 - a*b*B)*Sqrt[Tan[c + d*x]])/(a^2*(a^2 + b^2)*Sqrt[a + b*Tan[c + d*x]]))/d

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(5197\) vs. \(2(186)=372\).

Time = 3.93 (sec) , antiderivative size = 5198, normalized size of antiderivative = 24.06

method result size
default \(\text {Expression too large to display}\) \(5198\)
parts \(\text {Expression too large to display}\) \(1560457\)

[In]

int((A+B*tan(d*x+c))/tan(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 18689 vs. \(2 (180) = 360\).

Time = 7.04 (sec) , antiderivative size = 18689, normalized size of antiderivative = 86.52 \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate((A+B*tan(d*x+c))/tan(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Too large to include

Sympy [F]

\[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {A + B \tan {\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}} \tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((A+B*tan(d*x+c))/tan(d*x+c)**(3/2)/(a+b*tan(d*x+c))**(3/2),x)

[Out]

Integral((A + B*tan(c + d*x))/((a + b*tan(c + d*x))**(3/2)*tan(c + d*x)**(3/2)), x)

Maxima [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*tan(d*x+c))/tan(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

Giac [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*tan(d*x+c))/tan(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\text {Hanged} \]

[In]

int((A + B*tan(c + d*x))/(tan(c + d*x)^(3/2)*(a + b*tan(c + d*x))^(3/2)),x)

[Out]

\text{Hanged}